Course titl	e: Strength	of Materials II
-------------	-------------	-----------------

Course Basic Information			
Academic Unit:	Faculty of Civil Engineering		
Course title:	Strength of Materials II		
Level:	Bachelor		
Course Status:	Mandatory		
Year of Study:	2nd Year 4rth Semester		
Number of Classes per Week:	2+2		
ECTS Credits:	6		
Time /Location:	According to the timetable		
Teacher:	Professor assistant Arton D.Dautaj		
Contact Details:	e-mail; <u>arton.dautaj@u</u>	ni-pr.edu, <u>www.fn.uni-p</u>	r.edu
Course Description:	Strength of materials is	s a branch of applied me	chanics that deals with
_	the behaviour of solid b	odies subjected to vario	us types of loading.
	Furthermore, it studie	es deformations, strain	and displacement of
	deformable bodies and	their components. Under	rstanding these sizes for
	different levels of force	es provides a picture of	the behaviour of these
	structures and a safe	design of various structu	ures such as: buildings
	dams bridges shins r	planes etc. In this cours	se there are addressed
	combined axial torsion	and bending loads Oth	er important issues that
	are addressed are: Stat	ality of columns. Combin	and loading application
	of energy methods. The	hin-Walled Pressure Ves	sels and elastic plastic
	analysis Eailure Criteria	impact loading atc	
Course Coole:	Main aim of strongth	of materials is analy	sic and stability of the
Course Goals.	iviain aim of strength of materials is analysis and stability of the		
	columns, determination of stresses and deformations under combined		
	ioadings, applications	of energy method	in solving statically
	indeterminate bearing	structures. applying the	e principle of minimum
	potential energy. Desig	n of the beams and differ	rent hypothesis on Yield
	and Failure Criteria.		
Expected Learning Outcomes:	After completing this course, students will be able to:		
	- design column under	compression loads, dete	ermine stress and stress
	under combined loadin	g,	
	-Determining of strain e	energy for various loading	5.
	-knowing to solve static	ally indeterminate systen	ns using Energy method,
	unit load method and C	astilano's Method.	
	-Is able to design elements under complex loading-Design of the rods and beams with different Yield and Failure Criteria.		
	-Design of elastic- plast	ic beam, design of thin w	alled reservoirs etc.
Student Workload (should be in compliance with student's Learnign Outcomes)			
Activity	Hours	Day/ Week	Total
Lectures	2	15	30
Practical Work	2	15	30

Consultations with the teacher				
Field Work	0.5	6	3	
Test, seminar paper				
Homework	2	4	40	
Self-study (library or home)	1	15	15	
Preparation for final exam			15	
Assessment time (test, guiz,			26	
final exam)			26	
Projects, presentations, etc.				
Total			160	
		•		
Tooching Mothodo:	Lacturas avarcisas du	ring class using different	t materials one project	
reaching Methous:	Lectures, exercises during cluss using anjerent materials, one project			
	WORK IN GROUP OJ 2-3 SU	dents (independent work	(), inalviauai nomework	
Assessment Methods:	Limit course passing higher than 60%;			
	Student attendance 5%	$r_{\rm c}$		
	Individual assignments completed in class 5%;			
	Individual assignments completed at home 5%;			
	Evaluation from the tes	515 35%;		
	Final Exam 60%			
Drimany Literature:	[1] Strongth of matorial	ls second part authors [Totah lagyhiu	
Prindry Literature.	[1] Strength of materials, second part. authors: Fetan Jagxhiu			
	dhe Arton D Dautai	trength of materials n, au	thors. Fetan Jagxillu	
Additional Literature:	[2] P C Hibbolor: Moch	anics of Materials		
Additional Elterature.	[4] William A Nash: St	rength of Materials, New	Vork	
	London Melbourne T	oronto Otava 1998	TOIK,	
	[5] ROV R CRAIG IR · I	MECHANICS OF MATERIA	IS John Wiley & Sons	
	Inc $IIS\Delta$		L5, JOHN WHEY & JOHS,	
Designed teaching plan	1110,037			
Week	Title of the Lecture			
Week	Buckling of Columns Stability of elastic systems Buckling of straight			
Week 1	columns. Fuler equation. Fuler buckling stress and domain of uses of			
	Fuler expression, Refere	ences [1.3]		
	Buckling of Columns	Inelastic Buckling of Ide	al Columns, Design of	
Week 2:	Centrally Loaded			
	Columns. [1.3]			
	Combined loadings. De	finitions and types combi	ined loads.	
Week 3:	Unsymmetric Bending.	Tension and compression	of short columns.	
	Normal and shear stresses, deformation and design of short columns.			
	Combined loadings, Cro	oss section core State of s	stresses and	
Week 4:	deformations and desig	n of short columns cause	d by combined	
	loadings.			
	Combined loadings, Co	ombined Axial and Bend	ling Loads. The Secant	
Week 5:	Formula, Eccentrically L	oaded Columns Combine	d Bending and torsional	
	loads. General Combine	ed Loadings		
	Tensor Analysis, Tenso	or Analysis an overview,	Transformation of co-	
Week 6	ordinates, Second order	tensors, Addition, subtra	ction and multiplication	
	of tensors, Contraction,	Croneker symbols		
	Principles and energy n	nethods . Introduction, Ex	ternal Work and Strain	
Week 7.	Energy, Nonlinear elast	ic body. Stiffness and flex	ibility coefficients	
VVECN /.	Stiffness and flexibility	matrices. Elastic body und	der two forces. Strain	
	Energy expressed in stre	ess components		
	Principles and energy n	nethods . Elastic strain en	ergy for	
Week 8:	various types of load	ling. Work–Energy met	hod for Single Loads.	
	Reciprocity theorems. E	Betti's and Maxwell's theo	prem,.	

Week 9:	Applications of energy methods. Principle of virtual work or principle of virtual force. Internal works caused by different loading (axial, bending, torsion and shear forces). Principle of virtual displacement. Work and Strain Energy for various of loading	
Week 10:	Applications of energy methods. Potential energy method. Stationary potential energy. Stationary complementary potential energy	
Week 11:	Applications of Castigliano's Theorem. Calculating Deflections of Trusses and beams by Castigliano's TheoremUnit load method.	
Week 12:	Energy method applied to the Statically Indeterminate Beams. Ritz's method. Impact Loading	
Week 13:	Thin-Walled Pressure Vessels. Cylindrical Vessels. Spherical Vessels, Examples	
Week 14:	Yield and Failure Criteria. Introduction. Maximum Normal Stress Theory, Maximum strain theory. Maximum Shear Stress Theory, Maximum Distortion Energy Theory, Mohr's Failure Criterion-Mises theory.	
Week 15:	Introduction to analysis of elastic-plastic beams, The models of ideal materials. Yield Criteria .Analysis of beams made by ideal elastic-plastic materials. Elastic-plastic analysis of axial rod, Elastic- plastic analysis of torsion and bending beam, Residual stresses	

Academic Policies and Code of Conduct

Rules of conduct:

1. Regular attendance during lectures and exercises is compulsory,

2. Following up general faculty ruling and peace,

3. Turning of mobile phones during classes,

4. Entering in to the classroom on time,

5. The student has no right to be absent more than 3 class hours during the semester without justification. 6. Preparation and conducting the case studies in line with theoretical knowledge and presentation the findings in class. Students who have prepared and presented during the classes and pass the exam complete the subject duties and will be granted with passing grade.

Note | If a student has more than 3 class assignments evaluated below 50% he/she loses the right on taking the final exam. Evaluation is done from 0-100 %.